Oxidation Number

Common Oxidation Numbers

Atom or ion	Oxidation number	Examples
all atoms in elements	0	Na is 0, Cl in Cl ₂ is 0
hydrogen in all compounds	+1	H in HCl is +1
except hydrogen in hydrides	-1	H in LiH is -1
oxygen in all compounds	-2	0 in H₂0 is −2
except oxygen in peroxides	-1	0 in H_2O_2 is -1
all monatomic ions	charge on ion	Na ⁺ is +1, S ²⁻ is -2

SUMMARY

y Determining Oxidation Numbers

- Step 1 Assign common oxidation numbers.
- **Step 2** The total of the oxidation numbers of atoms in a molecule or ion equals the value of the net electric charge on the molecule or ion.
 - (a) The sum of the oxidation numbers for a compound is zero.
 - (b) The sum of the oxidation numbers for a polyatomic ion equals the charge on the ion.
- **Step 3** Any unknown oxidation number is determined algebraically from the sum of the known oxidation numbers and the net charge on the entity.

SUMMARY

Oxidation States

- Oxidation is an increase in oxidation number.
- Reduction is a decrease in oxidation number.
- A redox reaction involves both an oxidation and a reduction.

In a redox reaction, both oxidation and reduction occur.